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handed down-type squarks. In particular, µ→ eγ turns out to be highly susceptible to the

1-3 and 2-3 mixings thereof, due to the radiative correction from the top Yukawa coupling

to the scalar mass terms of 10. With a higher scalar mass around the optimal value,

in contrast, the quark sector inputs such as B-meson mixings and hadron electric dipole

moment, essentially determine the room for sfermion mixing. We also discuss the recent

deviation observed in Bs mixing phase, projected sensitivity of forthcoming experiments,

and ways to maintain the power of leptonic restrictions even after incorporating a solution

to fix the incorrect quark-lepton mass relations.
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1. Introduction

The Large Hadron Collider (LHC) has started finally, which we hope will be the first

machine to produce supersymmetric particles directly. At this stage, experimental input

that is still playing a major role in probing the soft supersymmetry breaking sector and

that will keep doing so even in the LHC era, is the flavor changing neutral current (FCNC)

and CP violating processes. From this data, one can extract information on the potential

new sources of flavor and CP violations in the soft supersymmetry breaking terms (see

e.g. [1] and papers that cite it). A model of supersymmetry breaking/mediation, possibly

in conjunction with a model of flavor, should be compatible with this information. In

particular, the past two years have seen new measurements of Bs-Bs mixing, both its

size [2, 3] and its phase [4 – 6] (the latter still with low precision), which provide new

important restrictions on the mixing between the second and the third families of down-

type squarks [7 – 10]. On the other hand, a new experiment is going to explore the lepton

flavor violation (LFV) decay mode µ→ eγ, squeezing its branching ratio down to the level

of 10−13 [11], two orders of magnitude lower than the current upper bound. Therefore, it

can be regarded as timely to update an analysis on supersymmetric flavor violation.
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An interesting option in this style of model-independent analysis is to work with a grand

unified theory (GUT). We take the SU(5) group for example. Since a single irreducible

representation contains both quarks and leptons, their flavor structures are related. This

enables us to use both quark sector and lepton sector processes to look into a single source of

flavor violation. It is entertaining to see which observable is supplying a tighter constraint.

The outcome can serve as a hint concerning which sector has a higher prospect for discovery

of FCNC mediated by sparticles. For the scalar masses and trilinear couplings to obey the

GUT symmetry, the scale of supersymmetry breaking mediation should be higher than

the GUT scale. We suppose that this scale M∗ is given by the reduced Planck scale

MPl/
√

8π ∼ 2×1018 GeV, or very close to it, as is the case in a gravity mediation scenario.

This work is by no means the first attempt in this direction [12 – 18]. Most notably,

there is a recent article that has performed an analysis in a similar framework [16]. Three

differences are worth mentioning. First, we use the aforementioned µ → eγ decay mode

to constrain the 1-3 and the 2-3 mixings, in addition to τ → eγ and τ → µγ which were

considered in ref. [16]. This seemingly unrelated process becomes relevant, and highly re-

strictive in some cases, thanks to the radiative correction to the 10 representation scalar

mass matrix from the top Yukawa coupling and the Cabibbo-Kobayashi-Maskawa (CKM)

mixing [19]. As a matter of fact, this mechanism has long been known and included in many

of the preceding model studies [12, 20, 21]. Yet, this is the first instance of taking it into

account in a model independent analysis allowing for general flavor mixing of sfermions, as

far as we know. Second, the authors of ref. [16] assume that the quark and the lepton mass

eigenstates at the GUT scale are aligned to a high degree. This may or may not be the case

if a solution is incorporated for fixing the wrong quark-lepton mass relations. Especially,

the first and the second families are subject to unlimited misalignment in general [12]. We

propose a method to overcome this obstacle to some extent. Third, we elucidate the impor-

tance of the gaugino to scalar mass ratio as a key parameter governing relative strengths

of the hadronic and the leptonic flavor violations. We show expansions and shrinks of

the territory ruled by each of the two sectors. In addition to these refinements, we include

remarks concerning the latest hint of anomaly in the mixing phase of the Bs-meson [22, 23].

This paper is organized as follows. In section 2, we spell out basics of flavor physics in a

supersymmetric SU(5) GUT model. Section 3 presents the procedure of numerical analysis

and the experimental inputs. In section 4, we exhibit the exclusion plot of each mass

insertion, and discuss how one can interpret the plot conservatively when the lagrangian

has non-renormalizable terms for accommodating the first and the second family fermion

masses. This section also has a collection of upper bounds on the sfermion mixings, as

well as deviations in selected CP asymmetries allowed by the other constraints. With a

summary, we conclude in section 5. One can find notations of the soft supersymmetry

breaking terms and the mass insertion parameters in the appendix.

2. SU(5) GUT and FCNC

2.1 GUT relation between squark and slepton mixings

Let us begin by reviewing basic elements of a supersymmetric SU(5) grand unification

model, that are relevant to flavor physics. The superpotential has the Yukawa couplings
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and the right-handed neutrino mass terms,

WGUT ⊃ −1

4
ǫabcdeλ

ij
UT

ab
i T

cd
j H

e +
√

2λijDHaT
ab
i F jb − λijNNiF jaH

a +
1

2
M ij
NNiNj . (2.1)

Matter fields in 10 and 5 representations are denoted by T and F , respectively, 5 and 5

Higgses by H and H, respectively, and a right-handed neutrino by N . The indices a, . . . , e

run over components of the fundamental representation of SU(5), and i, j = 1, 2, 3 indicate

the family. Obviously, λU and MN are symmetric matrices while λD and λN are not. The

above Yukawa couplings, by themselves, predict mass unification of down-type quarks and

charged leptons at the GUT scale:

me = md, mµ = ms, mτ = mb. (2.2)

Among these, the third relation is consistent with measurements at low energies, while the

first two are not. One way to explain this discrepancy is to make corrections to relatively

smaller masses by including the following non-renormalizable terms [24]:

WNR =
1

4
ǫabcde

(
f ij1 T

ab
i T

cd
j

Σe
f

M∗
Hf + f ij2 T

ab
i T

cf
j Hd

Σe
f

M∗

)

+
√

2

(
hij1 Ha

Σa
b

M∗
T bci F jc + hij2 HaT

ab
i

Σc
b

M∗
F jc

)
+ hijNNiF ja

Σa
b

M∗
Hb,

(2.3)

where Σ is the adjoint Higgs multiplet responsible for breaking SU(5) down to the Standard

Model (SM) gauge group. These terms will contribute to the Yukawa couplings of the

effective theory below the GUT scale, expressed in terms of the SM fields as

WSSM = QTYUUHu +QTYDDHd + LTYEEHd + LTYNNHu +
1

2
NTMNN, (2.4)

where the fields denoted by uppercase letters are components of the GUT multiplets,

Ti ≃ {Q,U,E}i, F i ≃ {D,L}i. (2.5)

The Yukawa couplings appearing in the superpotential of (2.4) are related to those in (2.1)

and (2.3) by

YU = λU + ξ

(
3

5
f1 +

3

20
fS2 +

1

4
fA2

)
, (2.6a)

YD = λD − ξ

(
3

5
h1 −

2

5
h2

)
, (2.6b)

Y T
E = λD − ξ

3

5
(h1 + h2), (2.6c)

Y T
N = λN + ξ

3

5
hN , (2.6d)

where the superscripts S and A denote the symmetric and the antisymmetric part of the

given matrix, respectively. The small number ξ is defined by

ξ ≡ 5
σ

M∗
≈ 10−2, (2.7)
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where σ is the vacuum expectation value (VEV) of Σ, expressed as in

〈Σ〉 = σ diag(2, 2, 2,−3,−3). (2.8)

The contribution from the non-renormalizable terms makes the difference,

YD − Y T
E = ξh2, (2.9)

and this can account for the first and the second family quark and lepton masses.

For this purpose, ref. [16] does not make use of the O(ξ) corrections, but they rely on

Georgi-Jarlskog mechanism [25]. Their scenario corresponds to a case in our work where

the quark and the lepton mass eigenbases coincide, i.e. UL = UR = 1 in the formalism

spelled out below.

Note that the proton lifetime depends on the structure of non-renormalizable opera-

tors [26], thereby imposing a restriction on the parameters appearing in (2.3). There are

corners of the parameter space in conflict with proton decay experiments. The present

work is not specific to a particular pattern of those terms and is valid provided that they

are Planck-suppressed.

In order to discuss flavor violation coming from the sfermion sector, one should fix the

basis of matter supermultiplets. One can choose a basis of Ti and F i fields such that

YU = V T
Q ŶUU

∗
Q, YD = ŶD, YE = UTL ŶEU

∗
R, YN = UTL V

T
L ŶN , (2.10)

where the hat on a matrix signifies that the given matrix is diagonal with positive ele-

ments [27], VQ and VL are unitary matrices in the standard parametrization [28, 29] each

with three mixing angles and one phase, and UQ, UL, and UR are general unitary matrices.

Note that YU may not be a symmetric matrix, unlike λU . In this basis where YD is diag-

onal, YE may not be diagonalized in general due to the difference (2.9), and it should be

decomposed into the above form using UL and UR. These two unitary matrices describe the

mismatch between the down-type quark and the charged lepton mass eigenstates, arising

from breakdown of the Yukawa unification Y T
E = YD which is a consequence of SU(5) at

the renormalizable level. Since UL and UR are crucial in correlating hadronic and leptonic

processes, we need to examine their structures. We can estimate the size of an off-diagonal

element of YE in the unit of the tau Yukawa coupling,

YE − ŶD

[ŶE]33
=

−ξhT2
mτ/(v cosβ)

≈ − cosβ hT2 , (2.11)

where v ≃ 170 GeV is the Higgs VEV. Notice the suppression by the factor cosβ for

high tanβ. Assuming that each element of h2 is not larger than O(1), one can obtain

approximate magnitudes of 1-3 and 2-3 mixings [12],

[UL]3a ≈ − cosβ [h2]3a, [UL]a3 ≈ cosβ [ULh
∗
2U

†
R]a3,

[UR]3a ≈ − cosβ [h†2]a3, [UR]a3 ≈ cosβ [U∗
Lh

T
2 U

T
R ]3a,

(2.12)
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for a = 1, 2. Note that they are suppressed by cosβ. The other entries of UL and UR
can be of O(1). Finally, we relate the fields to the down-quark and charged lepton mass

eigenstates as

Q = q, U = UTQu, E = UTRe, D = d, L = U †
Ll. (2.13)

This leads us to the superpotential,

WSSM = qT [V T
Q ŶU ]uHu + qT [ŶD]dHd

+ lT [ŶE]eHd + lT [V T
L ŶN ]NHu +

1

2
NTMNN.

(2.14)

One can notice that VQ is the CKM matrix at the GUT scale. If MN is diagonal in this

basis, one also has VL = U †
PMNS. Otherwise, the lepton mixing matrix receives additional

rotations for diagonalizing MN .

Let us turn to the soft supersymmetry breaking sector. The SU(5) symmetry relates

the soft supersymmetry breaking terms of squarks and sleptons in a single GUT multiplet.

The scalar mass terms are given by

−Lsoft ⊃ F
†
m2
F
F + T †m2

T T + F
† Σ

M∗
m2′
F
F + T † Σ

M∗
m2′
T T + · · · , (2.15)

in which the higher dimensional terms involving Σ are suppressed by O(ξ). In terms of

these soft mass parameters of the GUT multiplets, one can express the soft scalar mass

matrices of the SM fields as

m2
Q = m2

T +
1

10
ξ m2′

T , m2∗
U = m2

T − 2

5
ξ m2′

T , m2∗
E = m2

T +
3

5
ξ m2′

T , (2.16a)

m2∗
D = m2

F
+

2

5
ξ m2′

F
, m2

L = m2
F
− 3

5
ξ m2′

F
, (2.16b)

using (2.5). From these expressions and (2.13), one can see that the mass insertion param-

eters of down-type squarks and sleptons at the GUT scale are linked by

δlLL = UL δ
d∗
RR U

†
L + O(ξ), (2.17a)

δlRR = UR δ
d∗
LL U

†
R + O(ξ). (2.17b)

We can notice two possible sources of deviation from the naive equalities [14],

δlLL = δd∗RR, δlRR = δd∗LL. (2.18)

One is the higher dimensional terms in (2.15), which makes the O(ξ) corrections, and the

other is UL and UR, the unitary transformations parametrizing the misalignment between

the down-type quark and the charged lepton mass eigenstates. The former type of cor-

rections is negligible compared to the typical size of a scanning mass insertion parameter

appearing later on. On the other hand, these corrections might be comparable to the

renormalization group (RG) contribution to δlRR. Unless they are tuned in such a way that

they cancel out the RG-generated δlRR, they nevertheless do not undermine the importance

of µ→ eγ constraint. The latter needs more consideration. Obviously, UL and UR depend

– 5 –
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on h2 through YE. If h2 is diagonal in the basis where YD is diagonal, UL and UR are unit

matrices, and (2.18) becomes a fairly good approximation correlating squark and slepton

flavor mixings. If h2 is not diagonal, the correlation gets loose, but in many cases, LFV

processes can still give meaningful restrictions on the down-type squark mixings, thanks

to the suppression of 1-3 and 2-3 mixings shown in (2.12). Examples of this situation will

be presented in section 4.2.

In a similar way, the GUT symmetry links the scalar trilinear coupling terms of squarks

and sleptons so that their chirality-flipping mass insertions have the relations,

δlLR = UL δ
d T
LR U

†
R + O(ξ) ×A0〈Hd〉/m̃2

el
, (2.19)

where A0 is the overall scale of the A-terms and m̃el
is the average slepton mass. In what

follows, we do not use this expression since we will ignore the A-term contributions to

flavor violating processes.

2.2 RG running of scalar masses

RG running from one scale down to a lower scale generates off-diagonal elements of a

scalar mass matrix. For our purpose, we need to consider two intervals of scale: from M∗

to MGUT, and from MGUT (via MR) to MSUSY. The former is needed to determine the

boundary condition to give on the soft supersymmetry breaking terms at the GUT scale,

and the latter is to connect the given boundary condition with low energy observables.

First, we think of running between M∗ and MGUT. Using one-loop approximation, the

RG-induced off-diagonal elements can be written as [30, 31]

∆gm
2
T ≃− 2

(4π)2
[3λ∗Uλ

T
U + 2λ∗Dλ

T
D](3m2

0 + |A0|2) ln
M∗

MGUT
, (2.20a)

∆gm
2
F
≃− 2

(4π)2
[4λ†DλD + λ†NλN ](3m2

0 + |A0|2) ln
M∗

MGUT
, (2.20b)

where m0 is the scalar mass and A0 is the trilinear scalar coupling. Let us focus on the mass

matrix of T fields, which feeds into the mixings of left-handed squarks and right-handed

sleptons. From (2.6a), (2.10), (2.16a), and (2.20a), one can obtain the following form of

RG contribution to the LL squark mixing at the GUT scale,

(δdij)LL ≃ − 6

(4π)2
[V †
QŶ

2
UVQ]ij

3m2
0 + |A0|2

m̃2
ed
(MGUT)

ln
M∗

MGUT
+ O(ξ). (2.21)

The O(ξ) correction in the second term is not necessarily smaller than the first term coming

from the CKM mixing and the large top quark Yukawa coupling. Neither is it very likely,

however, that they cancel out leading to a value much smaller than the first term. That is,

the left-handed squark mixing in the above expression, without the O(ξ) correction, can

be regarded as the minimal value of (δdij)LL that is expected in a supersymmetric SU(5)

model with the cutoff at M∗. Let us record the CKM matrix dependence of the above

minimal mass insertions,

(δd12)LL ∼ V ∗
tdVts ∼ λ5, (δd13)LL ∼ V ∗

tdVtb ∼ λ3, (δd23)LL ∼ V ∗
tsVtb ∼ λ2, (2.22)
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where we also express them as powers of λ, sine of the Cabibbo angle.

Using (2.17b), one can get the right-handed slepton mixing from (2.21). Again, we

drop the O(ξ) term in (2.17b), assuming that it does not conspire with the first term to

result in a drastic cancellation. If UR is an identity matrix, (δlij)RR has the same pattern

as (2.22). Otherwise, one should take the misalignment into account. As (2.12) shows that

the 1-3 and 2-3 mixings are suppressed, one can rephrase (2.17b) into

(δla3)RR = [UR]ab (δdb3)
∗
LL [UR]∗33 + O(cos2β δdLL), a, b = 1, 2, (2.23)

where [UR]ab, the upper-left 2 × 2 submatrix of UR, is approximately unitary. [Sup-

posing universal scalar masses at M∗, one actually has another term of the form

[UR]a3 (δd33)LL [UR]∗33 where (with an abuse of notation what we here call) (δd33)LL is given

by setting i = j = 3 in (2.21). In what follows we discard this term although it can be

larger than what is kept in the above equation. Even if it happens to be non-negligible,

it generically enlarges the rate of µ → eγ, only to reinforce the sensitivity of this LFV

channel.] Keeping only the powers of λ, one can schematically rewrite this as

(δl13)RR ∼ [UR]11λ
3 + [UR]12λ

2, (δl23)RR ∼ [UR]21λ
3 + [UR]22λ

2. (2.24)

The mixing between the first and the second families, described by [UR]ab, is not particularly

restricted to be small. There can be small, large, or no mixing. One finds that (δla3)RR is

generically not much smaller than λ3, unless the mixing is fine-tuned in such a way that

the two terms cancel out in either of (2.24). For example, the mixing angle should be tuned

between −λ± λ2 in order to have |(δl13)RR| . λ4.

Next, we should turn to the running below MGUT. Before examining an off-diagonal

entry of a scalar mass matrix, let us recall the running of a diagonal element since a

mass insertion parameter is normalized by it. Squark and slepton masses at MSUSY are

approximately related to the GUT scale variables by

m̃2
ed
(MSUSY) ≈ (1 + 6x)m2

0, (2.25a)

m̃2
el
(MSUSY) ≈ m2

0, (2.25b)

with the definition of gaugino to scalar (squared) mass ratio,

x ≡M2
1/2/m

2
0. (2.26)

The squark mass increases considerably by the gaugino mass contribution. The slepton

mass actually receives a small correction from the gaugino mass, but it can be ignored

for later discussions. These facts will be crucial to understanding parameter dependence

of a constraint.

Unless tanβ is extremely high, an off-diagonal element ofm2
D does not run significantly,

while running of the left-handed squark mass matrix makes the difference [32],

∆s[m
2
Q]ij ≃ − 2

(4π)2
[V †
QŶ

2
UVQ]ij (3m2

0 + |A0|2) ln
MGUT

MSUSY
. (2.27)
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Using these facts and (2.25a), we can associate squark mass insertions at MSUSY to those

at MGUT as

(δdij)RR(MSUSY) ≈
(δdij)RR(MGUT)

1 + 6x
, (2.28a)

(δdij)LL(MSUSY) ≈
(δdij)LL(MGUT) + qij

1 + 6x
, (2.28b)

with the definition

qij ≡ ∆s[m
2
Q]ij/m

2
0. (2.29)

In a parallel way, one can relate slepton mass insertions at a low scale to those at a

high scale by

(δlij)RR(MSUSY) ≈ (δlij)RR(MGUT), (2.30a)

(δlij)LL(MSUSY) ≈ (δlij)LL(MGUT) + lij , (2.30b)

using (2.25b) and the definition lij ≡ ∆s[m
2
l ]ij/m

2
0 with the radiative correction to the

off-diagonal slepton mass matrix entries [33],

∆s[m
2
l ]ij ≃ − 2

(4π)2
[V †
L Ŷ

2
NVL]ij (3m2

0 + |A0|2) ln
MGUT

MR
. (2.31)

This estimate is based on the assumption that the right-handed neutrinos are degenerate

so that they are integrated out at a single scale MR. If they are not degenerate, it is

modified to involve mixings, phases, and eigenvalues of MN (see e.g. [13]). Even in this

case, it has been shown that one can use the above form of expression by replacing MR

with the largest eigenvalue of MN , if there is a large hierarchy among the right-handed

neutrino masses [13]. Unlike the quark sector, we do not yet have much information on

the neutrino Yukawa couplings. They can be of O(1) in the case of heavy right-handed

neutrinos, or extremely small if the neutrino masses are of Dirac type. Even if we suppose

that seesaw mechanism is working, a vast range of right-handed neutrino mass scale is

possible, from around the GUT scale down to the weak scale. Although the lepton mixing

angles have been measured to an extent, they cannot be directly related to the mixing

matrix VL due to the additional degrees of freedom in MN , the Majorana right-handed

neutrino mass matrix. Moreover, the hierarchy of neutrino masses is unknown yet. As

the magnitude of lij in one model can greatly differ from another, we choose to drop it in

the following analysis. Therefore, the results shown later are legitimate only for a scenario

where right-handed neutrinos are light enough for lij to be negligible in (2.30b). (For a

study on a case with a large neutrino Yukawa coupling and a specific boundary condition

on the soft terms, see e.g. [18, 34, 35].)

Nevertheless, there are circumstances where one can tell consequences of non-negligible

lij . Here, we assume that UL is a unit matrix. This assumption will be relaxed in section 4.2.

If neutrino Yukawa couplings are large, they affect not only the running below, but also

above MGUT, of m2
l . Thus, (δlij)LL(MGUT) is decomposed into two pieces,

(δlij)LL(MGUT) ≈ (δlij)LL(M∗) + αlij , (2.32)

– 8 –
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where the first term represents possible flavor non-universality at the reduced Planck scale,

and the second is the RG contribution with

α ≡ ln(M∗/MGUT)

ln(MGUT/MR)
. (2.33)

What we will do in the following sections is to search for a set of viable values of

(δlij)LL(MGUT), imposing experimental constraints. In terms of the variables in (2.32),

we can interpret this procedure in two different ways: we fix lij and scan over (δlij)LL(M∗),

or the other way around. As an example of the first option, suppose that one studies a

neutrino mass model in which the neutrino Yukawa matrix is given, but there is a room

for flavor mixing in the soft supersymmetry breaking terms. In this case, one can eas-

ily guess the allowed region of (δlij)LL(MGUT) = (δdij)
∗
RR(MGUT) from the one shown in

section 4.1 using (2.30b): shift the region by −lij. This method is applicable to a model

with non-degenerate right-handed neutrinos as well. Regarding the second option, one can

imagine a situation where the only source of F mixing is the neutrino Yukawa matrix, i.e.

(δlij)LL(M∗) = 0. Under this condition, (2.30b) can be rewritten as

(δlij)LL(MGUT) ≈ α

1 + α
(δlij)LL(MSUSY), (2.34)

which relies on the degeneracy of right-handed neutrinos. Obviously, the allowed region of

(δlij)LL(MGUT) is given by shrinking the one in section 4.1 by the factor α/(1 + α).

In this subsection, we used one-loop estimates to understand the qualitative behaviors

of squark and slepton mixings, but we numerically solve RG equations for quantitative

analysis in the subsequent sections.

3. How to impose constraints on scalar mixings

3.1 Scheme

One popular way to constrain sfermion mixings in a model-independent fashion is to scan

over one mass insertion parameter at a time, while setting the other parameters to zero.

The practical reason to assume all but one of the parameters to be zero is that it is

difficult or impossible to take more than one complex mass insertions as free variables

and plot the allowed volume. Despite its makeshift motive, this strategy works as long

as the parameter being swept by itself makes the dominant contribution to the process in

consideration. However, there are cases where presence of another mass insertion amplifies

the contribution from the scanned parameter, thereby rendering the constraint from a

process much tighter.

A well known example is B → Xsγ. For instance, a single (δd23)RR insertion contributes

to this decay via the gluino loop shown in figure 1 (a). If one takes into account nonzero

(δd33)RL insertion as well, the diagram in figure 1 (b) with double insertions can make an

additional contribution [10, 36], whose amplitude is enhanced by tanβ relative to the single

insertion graph due to the chirality flip on the gluino propagator. The reason for including

the double insertion diagram, namely considering nonzero (δd33)RL in addition to the (δd23)RR
under inspection, is not only that it can significantly increase the B → Xsγ branching ratio,
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g̃

×
b̃R s̃R

bL
g̃

sR

(δd
23

)RR

(a) single insertion

g̃

××
b̃R

b̃L s̃R

bL
g̃

sR

(δd
33

)RL (δd
23

)RR

(b) double insertion

Figure 1: Gluino loop contributions of (δd
23)RR to B → Xsγ.

g̃

×
× ×τ̃L τ̃R

µ̃L ẽR

µL
χ̃0

eR

(δl
33)RL

(δl
23)

∗
LL (δl

13)RR

Figure 2: Neutralino loop contribution to µ→ eγ with triple mass insertions.

but also that (δd33)RL ≡ mb(A − µ tanβ)/m̃2
ed

is generically present and therefore it should

not be ignored. An s→ d equivalent has been used in the study of ǫ′/ǫK [37].

Another example is Bs-Bs mixing. This process is affected by (δd23)RR as well. However,

the Bs-Bs mixing constraint on (δd23)RR greatly depends on the size of (δd23)LL [36], and

therefore it matters what value of the LL insertion we choose when we are focusing on the

RR mixing. Apart from the simple-minded choice of vanishing LL insertion, one option is

to set (δd23)LL = (δd23)RR [7], which may be expected from a left-right symmetry. Another

well-motivated value of (δd23)LL is the one generated by RG running from the scale where

the boundary condition is given down to the sparticle mass scale [8]. This value is shown

in a rather obscure form in (2.28b) and (2.21). It comes from the CKM mixing of quark

Yukawa couplings and is expected even with universal soft supersymmetry breaking terms

at M∗. It should be reasonable to expect at least this amount of LL insertion, even if one

allows for general non-universal boundary condition, which is the case in this work.

In the framework of supersymmetric GUT, the story can be extended in a more in-

teresting way. The aforementioned parameter (δd23)RR is related to (δl23)LL at the GUT

scale, and it can lead to LFV. An obvious decay mode is τ → µγ [13 – 16]. It can serve

as another constraint on (δd23)RR, under the assumption of SU(5) grand unification. A

less obvious mode is µ → eγ. Due to the GUT symmetry, the CKM mixing leads to an

off-diagonal element of the scalar mass matrix of the entire 10 members, while they run

from the reduced Planck scale down to the GUT scale. With the help of (δl13)RR produced

in this way, one can complete a diagram for µ → eγ with triple mass insertions shown in

figure 2. This diagram receives mτ/mµ enhancement relative to the usual chargino loop

since it is proportional to (δl33)RL [12, 20, 38, 39]. Therefore it can give a strong restriction
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on (δl23)LL and thus on (δd23)RR.

The above examples illustrate how much a constraint on a given mass insertion pa-

rameter can be strengthened due to the presence of another insertion. Then, the question

would be what the reasonable default value of a mass matrix element is, while a particular

mass insertion is being scanned. In this work, we take the following scheme for choosing the

default value of a soft supersymmetry breaking parameter: by default, the 10 soft scalar

mass matrix elements are set to the RG-induced values from the top Yukawa coupling

and the CKM mixing, and the off-diagonal components of 5 mass matrix are set to zero;

we ignore scalar trilinear couplings supposing that a loop graph arising from a nontrivial

A-term does not accidently cancel the contributions considered later.

Using this scheme, we carry out a numerical analysis taking the following steps. From

the Yukawa couplings and gauge couplings at the weak scale, those at the GUT scale

are computed by solving the one-loop RG equations. In this process, neutrino Yukawa

couplings are ignored. After reaching the GUT scale, we move to the basis of q, u, d, l,

and e such that Yd and Ye are diagonal. We assume that UL and UR are identity matrices,

and thus q, d, l, e are identical to their uppercase counterparts in (2.13). In terms of the

superpotential parameters, this corresponds to the case where h2 in (2.3) is such that it

reproduces the observed down-type quark and charged lepton masses, and is diagonal in

the basis where YD is diagonal. Consequences of relaxing this assumption will be discussed

in section 4.2. In this super-CKM basis of down-type quarks and charged leptons at the

GUT scale, we set the soft mass matrix of squarks to the form,

m2
q = m2

0




1 (δd12)LL (δd13)LL
(δd12)

∗
LL 1 (δd23)LL

(δd13)
∗
LL (δd23)

∗
LL 1


 , m2

d = m2
0




1 0 (δd13)RR
0 1 (δd23)RR

(δd13)
∗
RR (δd23)

∗
RR 1


 , (3.1)

and we determine the slepton soft masses using (2.16) neglecting the O(ξ) corrections. The

other scalar masses including those of Higgses are universally put tom0. The trilinear scalar

couplings are set to zero. With these boundary conditions given at the GUT scale, the

one-loop RG evolution of the lagrangian parameters is performed down to the weak scale.

In order to fill out the mass matrices of scalars, charginos, and neutralinos, we determine

µ from the electroweak symmetry breaking condition, choosing the positive sign. We have

numerically checked that changing the sign of µ does not make a substantial difference.

Then, we have all the sparticle mass matrices needed to calculate flavor and CP violation

quantities. We do not use mass insertion approximation, but employ mass eigenvalues and

mixing matrices, thereby taking account of multiple insertion graphs automatically. For a

quark sector amplitude, we keep only gluino loops, and disregard parametrically suppressed

corrections from neutralino, chargino, and charged Higgs exchanges.

Regarding patterns of the mass insertion parameters in (3.1), we consider the four cases

displayed in table 1. A parameter indicated as ‘free’ is a variable to be scanned over, and the

other three are fixed at the respective specified numbers, according to the policy outlined

above. Those numbers have been obtained by solving the RG equations for the soft scalar

mass matrices with universal boundary conditions at the reduced Planck scale down to the

GUT scale in a supersymmetric SU(5) model with minimal field content [12]. In this proce-
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Figure |(δd12)LL| |(δd13)LL| |(δd23)LL| |(δd13)RR| |(δd23)RR|
4 4.8 × 10−5 1.5 × 10−3 7.4 × 10−3 0 free

5 4.8 × 10−5 1.5 × 10−3 7.4 × 10−3 free 0

6 4.8 × 10−5 1.5 × 10−3 free 0 0

7 4.8 × 10−5 free 7.4 × 10−3 0 0

Table 1: Values of mass insertion parameters to be given as boundary conditions at the GUT scale,

for the case with m0 = 220 GeV, M1/2 = 180 GeV, and tanβ = 5. The phase of a fixed (δd
ij)LL is

equal to arg(−V ∗
tiVtj), as can be expected from (2.21). The first column points to the plot of each

free variable.

Observable Measured value Imposed constraint

∆MBd
0.507 ± 0.004 ps−1 [23] 0.507 ps−1 ± 30%

sin 2β 0.681 ± 0.025 [23] 2 σ

cos 2β > −0.4 [40]

B(B → Xdγ) (3.1 ± 0.9+0.6
−0.5 ± 0.5) × 10−6 [41] [5 × 10−7, 10−5]

∆MBs 17.77 ± 0.10 ± 0.07 ps−1 [3] 17.77 ps−1 ± 30%

φBs

−0.57+0.24
−0.30

+0.07
−0.02 [6] [−1.20, 0.06]

−0.76+0.37
−0.33, −2.37+0.33

−0.37 [23] [−1.26,−0.13] ∪ [−3.00,−1.88]

B(B → Xsγ) (352 ± 23 ± 9) × 10−6 [23] 2 σ

SφKCP 0.39 ± 0.17 [23] 2 σ

|ǫK | (2.232 ± 0.007) × 10−3 [29] |ǫSUSY
K | < |ǫexp

K |
ǫ′/ǫK (1.66 ± 0.26) × 10−3 [29] |(ǫ′/ǫK)SUSY| < |(ǫ′/ǫK)exp|
|dn| < 6.3 × 10−26 e cm [42]

Table 2: Constraints from the quark sector on sfermion mixing. An empty third column means

that the second column is used as is.

dure, we have ignored effects of non-renormalizable operators on the running of scalar mass

matrices. The size of (δdij)LL depends on m0, M1/2, and tanβ, where M1/2 is the unified

gaugino mass at MGUT. This dependence is taken into account in a plot for a different set of

input parameters, although the change from the value shown in the table is insignificant.

3.2 Observables

We summarize observables from the quark sector and how we use them as constraints, in

table 2.

The mass splittings of B0 and Bs mesons have been measured with high precision. The

error of ∆MBd
is 0.8% and that of ∆MBs is 0.7%. However, their theoretical prediction from

short-distance physics is not so precise. The main obstacle stems from f2
Bd
BBd

(f2
Bs
BBs)

which enters the hadronic matrix element of B0-B0 (Bs-Bs) mixing, parametrizing long-

distance QCD effects. The present uncertainty in lattice QCD calculation is around 30%

(see e.g. [43] and references therein). A popular way to avoid this large uncertainty is to

take the ratio ∆MBs/∆MBd
since the error in (f2

Bs
BBs)/(f

2
Bd
BBd

) is much smaller. Still,
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the SM prediction of the mass difference ratio has an uncertainty of about 40% due to the

errors in the CKM matrix elements [43]. As a comprehensive way to embrace the above

uncertainties, we require that each of computed ∆MBd
and ∆MBs falls within 30% of its

central value, fixing f2
Bd
BBd

and f2
Bs
BBs . In spite of the seemingly loose conditions, we

will find that these requirements play impressive roles, given higher soft scalar mass. The

uncertainty decreases with the progress of lattice QCD, and is estimated to be reducible

down to 8–10% with 6–60 tera flops year of computing power [44]. The improved constraint

from this smaller error is considered as well.

Although sin 2β does not suffer from uncertainty in the ∆B = 2 matrix element,

its SM prediction depends on Vub, which has a sizable error. When we require sin 2β

to be within the 2 σ range of its experimental value, we allow for a 2 σ variation in

|Vub| = (4.31 ± 0.30) × 10−3 [29] as well. As with the magnitude of mixing, we estimate

effects of an improved measurement of sin 2β at a super B factory, under the assumption

that it will converge to its SM value. We use 2% as a projected error of |Vub| and 0.005 as a

stadard deviation of sin 2β [45]. Given these smaller errors, the central values of |Vub| and

sin 2β, if they remain as they are now, become inconsistent with each other, reflecting the

present tension between them. Under this condition, the future sin 2β measurement would

appear to exclude the SM, and therefore it would be hard to evaluate the influence of its

improved precision. However, there is a claim that the tension can be reconciled within

the SM [46]. We do not regard this as a signal of new physics, and assume that |Vub| will

decrease so that it becomes compatible with the present sin 2β.

As for φBs , the phase of Bs-Bs mixing, we try two distinct ways of imposing the con-

straint: (a) using the latest data from DØ at 90% confidence level (CL); (b) employing

the 90% CL range recently reported by the Heavy Flavor Averaging Group (HFAG). Re-

garding option (b), we choose the one obtained with constraints from flavor-specific Bs
lifetime and Bs semileptonic asymmetry. (What is denoted by φBs in this work is φ

J/ψφ
s

in the notation of HFAG.) We present both of these cases as they lead to very different

impressions of the results—the DØ range includes the SM prediction of φBs and hence it

still works as a bound on the room for new physics, while the HFAG range lies outside

the SM value, thereby indicating the size of extra contribution required to account for the

discrepancy [47, 48]. In order to compare the power of φBs measurements at LHCb with

that of LFV, we suppose that the future central value of φBs is given by the SM, despite

the current hint of new physics at the level around 2 σ. We assume that the error of φBs

will be 0.009 at 10 fb−1 [49].

Measurement of the inclusive branching fraction B(B → Xdγ) had not been available

until its preliminary result was recently reported from BaBar [41]. The precision is still

low. Considering the experimental and theoretical uncertainties, we take modest upper

and lower bounds guesstimated from the exclusive branching fraction B(B → ρ/ω γ) =

(1.18 ± 0.17) × 10−6 [23]. Unlike B → Xdγ, the branching ratio of B → Xsγ has been

measured with a high precision. We impose a 2 σ constraint on it.

We use QCD factorization [50] to evaluate SφKCP , the sine term coefficient in the time-

dependent CP asymmetry of B → φK [51, 52]. This approach has a source of hadronic

uncertainty stemming from regularizing a divergent integral in the annihilation contri-
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Mode Present bound Future bound

B(µ→ eγ) 1.2 × 10−11 [54] 10−13 [11]

B(τ → eγ) 1.1 × 10−7 [55] 10−8 [56], 2 × 10−9 [45]

B(τ → µγ) 4.5 × 10−8 [57] 10−8 [56], 2 × 10−9 [45]

Table 3: Constraints from radiative LFV decay modes.

Observable Measured value

SK
∗γ

CP −0.19 ± 0.23 [23]

SργCP −0.83 ± 0.65 ± 0.18 [58]

SBs→K∗γ
CP

Ab→sγ
CP 0.004 ± 0.037 [23]

Ab→dγ
CP

A
b→(s+d)γ
CP

Table 4: Monitored observables. Precisions attainable at a super B factory are summarized in

table 6.

bution. We follow the original prescription in ref. [50], i.e. we replace
∫ 1
0 dy/y by XA =

(1+̺ eiϕ) ln(mB/Λh), with Λh = 500 MeV, 0 ≤ ̺ ≤ 1, and 0 ≤ ϕ < 2π [52]. We regard SφKCP

as consistent with the data if it is less than 2 σ away from the central value for any ̺ and ϕ.

We also incorporate the CP violation parameters ǫK and ǫ′/ǫK in KL → ππ in the

list. Although we do not explicitly scan over a 1-2 mixing, kaon physics can be influenced

by double or higher order insertions. Imposing those constraints, we require that new

physics contribution to each does not exceed the measured value in size. Concerning ǫK ,

its prediction from squark mixing can be made with an uncertainty much smaller than |ǫexp
K |.

However, we are assuming that there may be an arbitrary 1-2 squark mixing, although we

do not make a plot for it. This is why we are using a rather conservative bound.

Finally, we examine dn the neutron electric dipole moment (EDM). Recently it has

been pointed out that this observable can be greatly influenced if there are both LL and

RR down-type squark mixings at the same time [53]. In order to evaluate dn, we add

contributions through the down quark EDM, down quark chromoelectric dipole moment

(CEDM), and strange quark CEDM.

We use the constraints from the lepton sector listed in table 3. The second column

shows the present 90% CL upper bound on each mode. The third column is the prospective

upper bound from future experiments. The new limit on µ→ eγ is the goal of MEG at 90%

CL. Also, higher sensitivity to τ → eγ and τ → µγ is anticipated from a super B factory.

In section 4.1, we choose to use 10−8 as the future limit on B(τ → eγ) and B(τ → µγ),

between the two numbers in each row of the table. If one wants to use 2 × 10−9 instead,

the result can be obtained easily: multiply the upper bound on a given mass insertion from

τ → eγ or τ → µγ, by 1/
√

5.

Imposing the conditions enumerated above, we estimate possible deviations in addi-

tional observables of interest, shown in table 4. The first three measure time-dependent
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CP asymmetries in radiative B decays. The definition of SK
∗γ

CP is given by [59],

AK∗γ(t) ≡
Γ(Bd(t) → K∗γ) − Γ(Bd(t) → K∗γ)

Γ(Bd(t) → K∗γ) + Γ(Bd(t) → K∗γ)

=AK
∗γ

CP cos(∆MBd
t) + SK

∗γ
CP sin(∆MBd

t).

(3.2)

Note that the time-dependent CP asymmetry in Bd → K∗γ in our convention has the sign

opposite to that in the above reference. This observable is sensitive to a new CP violating

phase in the right-handed b→ s transition, such as coming from (δd23)RR. We define SργCP in

a parallel way by replacing K∗ with ρ in the expression. This can serve as a b→ d analog

of SK
∗γ

CP , affected by (δd13)RR. One might as well use SBs→K∗γ
CP to investigate (δd13)RR, and

we record its variation. The rest three are direct CP asymmetries in radiative B decays,

B → Xsγ, B → Xdγ, and B → Xs+dγ, whose definitions can be figured out by setting

t = 0 in the above equation. They are complementary to the preceding observables in

the sense that they can probe left-handed CP violating new physics such as (δd23)LL and

(δd13)LL. We quote the measured value of each observable if available.

4. Results

4.1 Viable region of each mass insertion

As a preparation for reading plots of the GUT scale mass insertions, we sketch the process

amplitudes in terms of these variables. This will help us understand how a figure changes

as a parameter is modified. Keeping only factors of interest, the LFV decay amplitudes

can be roughly put in the form,

A(τ → µγ) ∝ µ tanβ · (δl23)LL(MGUT)

m2
S

, (4.1a)

A(µ→ eγ) ∝ mτµ tanβ

m2
0

× (δl13)RR(MGUT) · (δl32)LL(MGUT)

m2
S

, (4.1b)

where mS is the typical mass of a slepton, chargino, or neutralino in the loop. The

first factor in the second line is (δl33)RL ≡ mτ (A − µ tanβ)/m̃2
el

rewritten with (2.25b).

We used (2.30) to replace the other mass insertions by the GUT scale quantities.

As to hadronic observables, let us pick up ∆MBs as an example; other constraints

can be understood in a similar fashion. The Bs-Bs transition amplitude depends on

(δd23)AA(δd23)BB/m
2
S with A,B = L,R. For instance, we can use (2.28) to recast one of

these combinations at MSUSY as

(δd23)LL(δd23)RR
m2
S

∣∣∣∣
MSUSY

≈ [(δd23)LL(MGUT) + qij] · (δd23)RR(MGUT)

(1 + 6x)2m2
S

, (4.2)

where mS is the typical mass of a squark or gluino in the loop. Note that qij from (2.29)

is nearly independent of m2
0. Therefore, as we vary m0 and M1/2, the scaling property

of (4.2) is determined by its denominator. The other two combinations with A = B = L,R

scale in the same way.
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Figure 3: Constraints on [(a), (b)] the ((δd
13)LL, (δ

d
23)RR) and [(c), (d)] the ((δd

13)RR, (δ
d
23)LL)

planes. For each LFV process, the thick curve is the present upper bound and the thin curve is the

prospective future bound. A light gray (yellow) region is allowed by [(a), (b)] ∆MBs
or [(c), (d)]

∆MBd
, given 30% uncertainty in the ∆B = 2 matrix element, and a gray (cyan) region is further

consistent with [(a), (b)] φBs
from DØ or [(c), (d)] sin 2β. The white lines around the center

mark a possible improved constraint from [(a), (b)] ∆MBs
or [(c), (d)] ∆MBd

, with 8% hadronic

uncertainty. The white curves with short thin lines attached to them display a measurement of [(a),

(b)] φBs
at LHCb or [(c), (d)] sin 2β at a super B factory. Those short lines indicate the excluded

side. Contributions from RG evolution to [(a), (b)] (δd
13)LL and [(c), (d)] (δd

23)LL are indicated by

the vertical and the horizontal hatched strips, respectively. Their widths do not have any meaning.

With these ingredients at hand, we begin to interpret the results. First of all, let us

look at the result of a two-parameter scan to get a taste of two mass insertions. In each of

the four plots shown in figures 3, there are 1-3 and 2-3 mixings with different chiralities.

The gaugino mass M1/2 at the GUT scale is chosen in such a way that the gluino mass

becomes 500 GeV at the weak scale. The scalar mass m0 at MGUT is set to two different
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values that can elucidate complementarity of the quark and the lepton sector processes. In

the left column, m0 is taken to be 220 GeV, so that the first and the second family right-

handed down-type squarks have the same mass as the gluino at the weak scale. (The third

family is slightly lighter.) This is a benchmark case often encountered in the literature on

supersymmetric flavor violation. In the right column, we change m0 to 600 GeV. If one

fixes the δ parameters at MGUT, this m0 maximizes gluino loop contribution to B-meson

mixing for the gaugino mass chosen here. We elaborate on this point later. On the plots,

each mass insertion parameter is treated as a real number.

In each of figures 3 (a) and (b), the two axes are (δd13)LL = (δl13)
∗
RR and (δd23)RR =

(δl23)
∗
LL at the GUT scale. Here we restrict the horizontal axis to a range much narrower

than the vertical axis since we are especially interested in the effect of RG contribution,

but otherwise the LL mixing can be arbitrary. One can find that (δd23)RR is constrained by

τ → µγ and ∆MBs . Interestingly, the two plots show different relative significance of these

two constraints. In figure (a), τ → µγ is stronger than ∆MBs , i.e. a large portion of the

region allowed by the latter is excluded by the former. In figure (b), the order of importance

appears to be reversed. Although it is early to draw a conclusion since these plots restrict

the mass insertions to be real, it is obvious that ∆MBs gets tighter while τ → µγ becomes

looser if m0 is changed from 220 GeV to 600 GeV. As m0 increases, the LFV constraints

get relaxed because mS gets bigger in (4.1). In fact, µ in a numerator grows as well,

but the growth of m2
S in the denominator wins. In spite of heavier sparticles, hadronic

constraints get relatively more stringent. To understand why, pay attention to (4.2). Since

we have fixed the gluino mass while raising m0, a squark is heavier than a gluino, and

we should substitute (2.25a) for m2
S . Then, the gluino loop contribution to Bs-Bs mixing

scales like x/(1 + 6x)3. This factor increases as we decrease x inversely proportional to

m2
0, unless x is smaller than 1/12, the maximum point. For x . 1/12, the squarks are so

heavy that they begin to decouple from low-energy processes as in split supersymmetry.

Note that x = 0.67 on the left plot and x = 0.09 on the right. This explains the narrower

∆MBs band on the right plot.1 Other quark sector processes are enhanced in a similar

way, as will be shown later. As can be expected from figure 2, µ→ eγ restricts the product

(δd13)LL(δd23)RR, resulting in the hyperbolas on the plane. Therefore, the µ → eγ limit

on (δd23)RR varies depending on the size of (δd13)LL. If (δd13)LL = 0, (δd23)RR is free, but

the restraint grows severer as |(δd13)LL| increases. A special case with RG-induced (δd13)LL,

marked by the vertical hatched strip, will be detailed shortly. With increasing m0, µ→ eγ

is doubly suppressed by m2
0m

2
S in (4.1b). This expands the area within the hyperbola in

the plots. The width of the ∆MBs band is mainly due to the current uncertainty in the

Bs-Bs mixing matrix element around 30%. The projected bound with 8% uncertainty is

depicted by the two white lines around (δd23)RR = 0. In figure (a), it is not yet as tight

as the present τ → µγ constraint which will be even tighter in the future. However, in

figure (b), the reduced hadronic uncertainty makes the ∆MBs bound more restrictive than

1A similar discussion is given in ref. [34] in a different context, in a more qualitative way. In their

scenario, the 2-3 squark mixing arises from large neutrino Yukawa couplings. They state that squark loop

effects on Bs mixing can be more significant for higher m0. However, they do not mention at what point

of m0 this trend stops and squark loops begin to decouple.
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τ → µγ at a super B factory. Nevertheless, it should be kept in mind that τ → µγ becomes

more sensitive as tanβ grows while Bs-Bs mixing does not.

We do the same exercise with a different mixture of mass insertions, (δd13)RR = (δl13)
∗
LL

and (δd23)LL = (δl23)
∗
RR, to get figures 3 (c) and (d). The vertical range is set around the

magnitude generated by RG running. Here (δd13)RR is bounded by ∆MBd
, sin 2β, τ → eγ,

and B → Xdγ. In figure (c), the current limits from ∆MBd
and τ → eγ are comparable to

each other, which are stronger than B → Xdγ. In figure (d), ∆MBd
with the aid of sin 2β

leaves a band which is much narrower than that allowed by τ → eγ. Also, the B → Xdγ

bound moves inside the τ → eγ bound. These changes, as well as enhancement of the

other quark sector processes, can be understood in the same way as the difference between

figures (a) and (b). The inner two white lines around (δd13)RR = 0 indicate the limit from

∆MBd
with 8% uncertainty in the B0-B0 mixing matrix element, and the outer two white

lines with short thin lines attached to them arise from sin 2β at a super B factory. The

projected limits from ∆MBd
and τ → eγ are expected to maintain the present tendency

of relative strengths. That is, they are comparable to each other in figure (c) and the

former is stronger than the latter in figure (d). Again, the hyperbolas come from µ→ eγ.

Boundaries by the neutron EDM appear in figure (d) even though all the mixings are

real. Extra contribution to dn arises from the combination (δd13)LL(δd13)
∗
RR of which the LL

insertion picks up a non-vanishing phase from the CKM matrix, running from the GUT

scale down to the weak scale. A specific case with RG-induced (δd23)LL, indicated by the

horizontal hatched strip, will be discussed later.

Having grasped a picture of how different constraints act on two mass insertions, let

us examine cases where one of the insertions originates from RG running from the reduced

Planck scale to the GUT scale.

We display in figures 4, complex versions of figures 3 (a) and (b) with the LL inser-

tions fixed at the numbers shown in table 1. They indicate regions of (δd23)RR = (δl23)
∗
LL

(in)consistent with observations. This time, tanβ is varied as well as m0. Let us walk

through them starting from figure 4 (a). A light gray (yellow) area is allowed by ∆MBs

but not by φBs from DØ. A gray (cyan) area is allowed by both. However, most of it is

ruled out by the LFV processes, as we have already noticed in figure 3 (a). One can guess

that this should be the case even in the near future, comparing the zone surrounded by the

white curves and the thin circles with their centers at the origin. In particular, the µ→ eγ

data from the MEG experiment should be able to kill all the parameter space except for

the tiny disk around the origin. It deserves a remark that µ→ eγ is playing an important

role here. Being a 2-3 mixing, (δd23)RR is normally associated with the τ → µγ process.

For example, ref. [16] discusses interplay between leptonic and hadronic constraints in a

similar context, but they use only τ → µ transitions to restrict (δd23)RR. This difference

arises from the strategy of setting the mass insertion parameters. Their default value of

a mass insertion is zero, while our default is the one which is minimally expected from

RG running. Therefore, they do not find µ → eγ limiting a 2-3 mixing as is obvious from

figure 3 (a). We believe that our choice of mass insertions is more reasonable in a scenario

where the soft terms are generated around the Planck scale such as gravity mediation.

It may be argued that the RG-induced 10 scalar mixing is not always guaranteed to be
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(d) m0 = 600 GeV, M1/2 = 180 GeV, tanβ = 10

Figure 4: Constraints on the complex plane of (δd
23)RR, with (δd

ij)LL generated from RG running

between the reduced Planck scale and the GUT scale. For each LFV process, the thick circle is

the present upper bound and the thin circle is the prospective future bound. A light gray (yellow)

region is allowed by ∆MBs
, given 30% uncertainty in the ∆B = 2 matrix element, and a gray (cyan)

region is further consistent with φBs
from DØ. A thick black curve shows φBs

from HFAG. The

white curves running from top to bottom mark a possible improved constraint from ∆MBs
with

8% hadronic uncertainty. The other white lines running from left to right display a measurement

of φBs
at LHCb. Thin short lines attached to a curve indicate the excluded side.

sizeable since the cutoff scale can happen to be low close to the GUT scale. This is true.

However, a low cutoff would threaten the validity of making a connection between the quark

and the lepton flavors in the first place. Non-renormalizable operators shown in (2.3) and

even higher order terms, generically, give O(1) contributions to the quark and the lepton

Yukawa couplings, thereby erasing any trace of their connection in the flavor space as a

single GUT multiplet. It should be remembered that an RG-induced LL insertion is not
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only critical to µ → eγ, but also to Bs-Bs mixing. Indeed, the presence of (δd23)LL is

rendering the ∆MBs constraint on (δd23)RR tighter [7, 8, 36]. If it were not for (δd23)LL, the

gray region would look like the one in figure 6 (a), where the contribution to ∆MBs from

(δd23)LL is not enhanced by (δd23)RR. Another noticeable point is that the information on

φBs from LHCb can play an important role in shaping the allowed region. A particular

pleasure with this constraint that it does not suffer from the hadronic uncertainty that

plagues ∆MBs . Other observables of interest related to 2-3 mixing are SφKCP and dn. The

area excluded by each of them is depicted. Note that dn depends on the phase of (δd23)LL
as well as on its size. Although the phase of the first term in (2.21) is fixed by the CKM

matrix elements, the O(ξ) correction is unknown and may influence the phase of the entire

insertion. Varying the phase of (δd23)LL amounts to rotating the dn band on the plot around

the origin. Finally, the dotted lines are contours of SK
∗γ

CP . From them, one can read off its

largest possible deviation that is consistent with the other experimental inputs. Further

information on this CP asymmetry is collected in section 4.4.

Now that we have recognized the general structure of a plot, we try different values of

parameters. First, tanβ is doubled from 5 to 10 in figure 4 (b). The ∆MBs belt does not

change very much since its dependence on tanβ is negligible. Each LFV circle halves and

becomes tighter. This is evident from (4.1), where each decay amplitude is proportional to

tanβ. The gluino loop diagrams contributing to each of dn and the B → φK decay are also

proportional to tanβ, and the allowed region shrinks as tanβ increases. Next, we change

the scalar mass parameter. In figure 4 (c), we raise m0 to 600 GeV, a value optimized

for B-meson mixings. For the reason already explained, the LFV constraints turn weaker

while the Bs-Bs mixing belt shrinks on the plot. Other quark sector processes are boosted

as well. Because of this, the impressions of hadronic and leptonic bounds undergo a sea

change from figure (a) to (c). The current µ→ eγ limit gets so much relaxed that it does

not exclude any region compatible with ∆MBs and φBs . One can also notice that dn has

become much more powerful. Its limit on the imaginary part of (δd23)RR is stronger than

any other bound on the plot. Indeed, the combination of dn and Bs-Bs mixing leaves

nothing to do for τ → µγ. In the future case, Bs-Bs mixing looks more restrictive than

τ → µγ and µ → eγ, particularly thanks to improved precision of φBs at LHCb. This

should be contrasted with the situation in figure (a) where the LFV constraints, both at

present and in the future, are stronger than the hadronic ones. Lastly, we consider higher

m0 and tanβ in figure (d). Each observable changes according to its tanβ dependence

already mentioned. For the first time, the B → Xsγ bound becomes visible. Until now,

its branching fraction has not been sufficiently disturbed by the new physics contribution

given by figure 1 (b). One reason is that this diagram does not interfere with the SM

one since they lead to different photon helicities. In figure 4 (d), however, higher m0 and

tanβ cooperate to enhance the supersymmetric amplitude. Still, B → Xsγ is not very

restrictive. Its role should be more significant for tanβ much higher than 10. The range of

SK
∗γ

CP predicted in each case is summarized in table 6.

A remark is in order regarding the recent reports on φBs which reveal a small but

interesting disparity between the combined fit and the SM prediction [22, 23]. Once we

take the 90% CL range of φBs from HFAG, instead of that from DØ, the gray regions
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change to those surrounded by the thick black curves. Since the HFAG result demands

new physics contribution to φBs , the origin on the plane is positioned outside the thick

black boundary. On the other hand, the mass insertion can be compatible with the LFV

data only around the origin. This conflict leads to a restriction in an attempt to understand

the new fit result of φBs with an RR mixing. The trouble is more serious with lower m0

and/or higher tanβ. As was explained above, lower m0 enhances the LFV branching ratios

while suppressing supersymmetric contributions to Bs-Bs mixing. Also, higher tanβ gives

rise to higher LFV rates. Figures (a) and (b) tell us that these cases are disfavored by

LFV in combination with φBs . The tension between LFV and φBs is relaxed for higher m0

used in the lower plots. Indeed, one can find a small intersection of the φBs area and the

τ → µγ disk in each of figures (c) and (d). This region could be accessed by measurements

of τ → µγ and µ → eγ in the near future. However, the neutron EDM becomes a new

obstacle to the zone favored by φBs as higher m0 reinforces hadronic constraints. The limit

from dn grows more serious for higher tanβ. The problem can be eased by modifying the

size and phase of (δd23)LL at the GUT scale to rotate the dn band as already mentioned.

At this point we stop considering 2-3 mixing of F , and apply the same procedure

to the 1-3 sector. We present in figures 5, complex versions of figures 3 (c) and (d)

with the LL insertions fixed at the values listed in table 1. They exhibit constraints

on (δd13)RR = (δl13)
∗
LL. We start over with figure 5 (a). The light gray (yellow) belt is

compatible with ∆MBd
, which is further reduced by sin 2β into the gray (cyan) region.

The resulting area is completely consistent with B → Xdγ. The width of this area is

comparable to the diameter of the circle from τ → eγ. The restriction from µ → eγ is so

strong that it rules out most of the gray zone. The µ→ eγ disk in this plot is smaller than

that in figure 4 (a). The reason is that the decay amplitude is proportional to (δl23)RR ∼ λ2

here, but to (δl13)RR ∼ λ3 there. In a few years, improved lattice QCD should be able to

narrow the ∆MBd
belt down to the one between the two white curves, whose width is

again comparable to the diameter of the future τ → eγ disk. If this narrowed belt is

complemented by measurement of sin 2β at a super B factory, the combined constraint

could be comparable to or stronger than the future τ → eγ bound. The MEG constraint

is so tight that the circle appears to be a single dot at the origin. The radius of this circle

can be looked up in table 5. The dotted curves are contours of SργCP. We present its shift

that can be expected obeying other constraints in section 4.4. The rest three plots are for

the cases with (b) higher tanβ, (c) higher m0, and (d) higher m0 and tanβ, respectively.

They can be understood in the same way as each corresponding figure in figures 4 was. Let

us stress again that with higher m0, the sensitivity of hadronic observables to the GUT

scale mass insertions is reinforced while that of LFV is weakened. In figures (c) and (d),

the combination of ∆MBd
and sin 2β essentially determines the viable areas. This trend is

expected to be maintained by a super B factory. One can notice that dn in figures (c) and

(d), and ǫ′/ǫK in figure (d), begin to be visible due to increased m0. These quantities are

susceptible to the imaginary parts of (δd13)RR(δd33)RL(δd31)LL and (δd13)RR(δd33)RL(δd32)LL,

respectively, although they are not playing important roles here. Figures 5 (b) and (d)

show that the amplitude of B → Xdγ is enhanced by higher tanβ. One can see the reason

replacing s by d in figure 1 (b).
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Figure 5: Constraints on the complex plane of (δd
13)RR, with (δd

ij)LL generated from RG running

between the reduced Planck scale and the GUT scale. For each LFV process, the thick circle is

the present upper bound and the thin circle is the prospective future bound. A light gray (yellow)

region is allowed by ∆MBd
, given 30% uncertainty in the ∆B = 2 matrix element, and a gray

(cyan) region is further consistent with sin 2β. The white curves running along the belt mark a

possible improved constraint from ∆MBd
with 8% hadronic uncertainty. The other white lines

running across the belt display a measurement of sin 2β at a super B factory. Of the two sides of

a cos 2β curve or a white sin 2β curve, the excluded one is indicated by thin short lines.

For the sake of completeness, we report restrictions on the 10 sector mixings as well,

which can be represented by (δdij)LL = (δlij)
∗
RR. In figures 6, we examine the 2-3 mixing.

Comparing them with figures 4, one can notice that Bs-Bs mixing is not as restrictive

on (δd23)LL as (δd23)RR. There, the gluino loop contribution from (δd23)RR to the ∆B = 2

transition was enhanced by (δd23)LL from radiative correction. By contrast, (δd23)LL here is

not reinforced by (δd23)RR which is set to zero. Nonetheless, ∆MBs and φBs exclude part of
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(d) m0 = 600 GeV, M1/2 = 180 GeV, tanβ = 10

Figure 6: Constraints on the complex plane of (δd
23)LL, with (δd

12)LL and (δd
13)LL generated from

RG running between the reduced Planck scale and the GUT scale. For each LFV process, the thick

circle is the present upper bound and the thin circle is the prospective future bound. A light gray

(yellow) region is allowed by ∆MBs
, given 30% uncertainty in the ∆B = 2 matrix element, and a

gray (cyan) region is further consistent with φBs
from DØ. A thick black curve shows φBs

from

HFAG. The white curves without short thin lines mark a possible improved constraint from ∆MBd

with 8% hadronic uncertainty. The white curves with short thin lines attached to them display a

measurement of φBs
at LHCb. Thin short lines attached to a curve indicate the excluded side.

the plane in figures 6 (c) and (d) where their sensitivities to the GUT scale squark mixing

are maximized. These constraints should be strengthened in the future. The white curves

with short thin lines attached to them mark an improved φBs measurement at LHCb.

They appear in all the four cases. The other white curves, appearing in figures (c) and

(d), represent the projected ∆MBs limit. Another outstanding point is that B → Xsγ is

excluding larger area of the (δd23)LL plane than (δd23)RR. Recall that the supersymmetric
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diagram arising from an LL mixing is added to the SM piece since they have the same

chirality structure, while they do not interfere in the RR insertion case in figures 4. This

bound grows more stringent for higher tanβ as is evident from plots in the right column.

The LFV constraints are noticeably weaker here than in figures 4. Concerning τ → µγ,

this is because the decay is dominated by neutralino loop here, but by chargino loop there.

The chargino loop, if present, generically has higher effectiveness per mass insertion size,

than the neutralino loop. One can find that µ → eγ also occurs. It is caused by a

neutralino loop graph proportional to (δl23)RR(δl31)RR with RG-induced (δl31)RR. However,

it is not strengthened by the factor mτ/mµ, which accounts for the lower branching ratio

than in figures 4. Despite being moderate, the present and future LFV bounds are still

disallowing portions of the parameter space. The dotted contours show Ab→sγ
CP , the direct

CP asymmetry in B → Xsγ. The numerical value of its variation is shown in table 4,

together with that of another related CP asymmetry, A
b→(s+d)γ
CP .

Now, we switch to the HFAG fit of the phase of Bs-Bs mixing. In figures 4 (a) and

(b), we cannot find a point which falls within the 90% CL range of φBs , even if we allow

for an O(1) squark mixing. Favored regions appear in figures (c) and (d), where hadronic

processes are enhanced. As those regions involve a large 2-3 mixing of left handed down-

type squarks, they are likely to give a large modification to B → Xsγ, in particular for high

tanβ. In figure (d), one can notice that a substantial part of the zone of (δd23)LL, needed

to fit φBs , may conflict with SφKCP . This conflict also grows more serious with increasing

tanβ. In an attempt to account for the negative value of φBs with an LL mixing, one could

have a bigger hope, given a large mixing, higher m0, and low tanβ. Even if this scenario is

realized, τ → µγ and µ→ eγ will be hard to observe even at a super B factory or MEG.

Finally, we proceed to the exclusion plots on the complex plane of (δd13)LL = (δl13)
∗
RR in

figures 7. Let us compare these with those in figures 5. A gray (cyan) region here is larger.

A significant portion of a gray zone is cut out by B → Xdγ [60]. The LFV circles are sig-

nificantly bigger. Each of the above facts can be explained in a parallel fashion as we did in

the previous paragraph. The dotted contours are values of Ab→dγ
CP . Its discussion will follow

in a later part. Note that there are cases where the future LFV data may kill part of the

area that is compatible with B physics measurements. An example is shown in figure 7 (b)

with lower m0 and higher tanβ. Yet, constraints mostly come from the hadronic sector.

We finish this subsection with a remark on the sizes of the allowed regions shown

in the preceding figures. We use mass insertion parameters at the GUT scale as the

horizontal and vertical axes. Therefore, one should be careful in comparing a plot in this

paper with one from another work, when the latter is using mass insertions at the weak

scale. If the weak scale variable is a squark mass insertion, one should convert our plots

using (2.28) beforehand.

4.2 Non-renormalizable operators and leptonic constraints

In the numerical analysis of the previous subsection, we have been employing the naive

relations (2.18). Now, we should discuss how the results will change if we relax this simpli-

fication and generalize the correlation of mass insertions to (2.17). One could easily guess

that the one-to-one correspondence between a hadronic and a leptonic channel should be
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(d) m0 = 600 GeV, M1/2 = 180 GeV, tanβ = 10

Figure 7: Constraints on the complex plane of (δd
13)LL, with (δd

12)LL and (δd
23)LL generated from

RG running between the reduced Planck scale and the GUT scale. For each LFV process, the thick

circle is the present upper bound and the thin circle is the prospective future bound. A light gray

(yellow) region is allowed by ∆MBd
, given 30% uncertainty in the ∆B = 2 matrix element, and

a gray (cyan) region is further consistent with sin 2β. The white curves without short thin lines

attached to them mark a possible improved constraint from ∆MBd
with 8% hadronic uncertainty.

The white curves with short thin lines attached to them display a measurement of sin 2β at a super

B factory. Of the two sides of a cos 2β curve or a white sin 2β curve, the excluded one is indicated

by the thin short lines.

disturbed. Yet, it is not completely broken as will be shown below. Tau decay modes still

limit 1-3 and 2-3 mixings of squarks of either chirality, albeit to a reduced extent. Similarly,

µ → eγ remains a constraint on the RR insertions.

Let us think about how a tau decay bound should be modified. We first focus on RR

insertions, and then on LL. If there is an RR mixing, a tau decay amplitude is dominated
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by the chargino loop which is proportional to (δl13)LL for τ → eγ or (δl23)LL for τ → µγ.

Neglecting the O(ξ) term in (2.17a), one has

(δla3)LL = [UL]ab (δdb3)
∗
RR [UL]∗33 + O(cos2β δdRR), a, b = 1, 2, (4.3)

using (2.12), the smallness of mixing of the third family with the other two. [By the same

token as for (2.23), there can be another term [UL]a3 (δd33)RR [UL]∗33 ∼ 1.5 × 10−5/ cosβ +

0.17λ2
N cosβ where we use the (3, 3) component of (2.20b) for its estimation. For small

neutrino Yukawa couplings, which we assume in the numerical analysis, this term is negli-

gible even compared to the smallest upper bound that can be found in table 5. For large

λN , this should be an uncertainty in relating squark and slepton mixings, apart from that

stemming from running below MGUT.] The mixing between the first and the second fam-

ilies, parametrized by [UL]ab, is not limited to be small. For instance, consider the case

where (δd23)RR is nonzero while (δd13)RR is zero, as in figures 4. Here, τ → µγ provides a

significant constraint on (δd23)RR if UL is a unit matrix. Otherwise, it might happen that

the association of (δl23)LL with (δd23)RR is weakened by the factor [UL]22, or in the worst

case, is completely broken for [UL]22 = 0. Although τ → µγ does not occur in this extreme

situation, τ → eγ does since (δd23)RR gives rise to it through (δl13)LL due to the approximate

unitarity of [UL]ab. This argument, for a general [UL]ab, can be summarized in the form,

|(δl13)LL|2 + |(δl23)LL|2 ≈ |(δd13)RR|2 + |(δd23)RR|2 + O[cos2β (δdRR)2], (4.4)

which determines B(τ → (e + µ) γ). The mass insertions appearing above are all at the

GUT scale. Note that the current experimental bounds on B(τ → µγ) and B(τ → eγ)

differ only by a factor of 2.4. Therefore, once one combines these two, one can always give

an upper bound on each of (δd23)RR and (δd13)RR, almost independent of UL. The error

caused by non-vanishing 1-3 or 2-3 mixing in UL, is diminished below 10% even for tanβ

as low as 3. If one wants to apply this conservative constraint to the case of figures 4, the

radius of each thick τ → µγ circle should be enlarged by a factor of 1.9. The thick τ → eγ

circles in figures 5 should be expanded by a factor of 1.2. Similarly, the future bounds can

be modified: multiply each by
√

2. Even in this case, tau decays remain severe constraints

on sfermion mixings.

The same prescription can be applied to the tau decay bound on an LL mixing. Except

that the amplitude is dominated by a neutralino loop, we can repeat the above line of

reasoning with L and R exchanged. In this case, a possible additional term in (2.23)

arising from (δd33)LL, discussed in section 2.2, is negligible relative to an upper limit from

τ → µγ or τ → eγ shown in figures 6 and 7. One can obtain a region permitted by

τ → (e + µ) γ in figures 6, multiplying the radius of a thick τ → µγ circle by 1.9. The

expansion factor for figures 7 is 1.2. Again, each future bound should be multiplied by
√

2.

Unlike the tau decay modes, µ → eγ is more involved, and the following method is

applicable only to an RR insertion. The dominant contribution comes from the triple

insertion graph in figure 2. Including the diagram with opposite chirality structure, we

find that the decay rate is proportional to

d ≡ |(δl13)RR(δl32)LL|2 + |(δl13)LL(δl32)RR|2. (4.5)
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The µ→ eγ data supplies an upper limit on this quantity. One can use (4.4) to show that

d & min{|(δl13)RR|2, |(δl23)RR|2} · [|(δd13)RR|2 + |(δd23)RR|2], (4.6)

ignoring the term suppressed by cos2β. In contrast to τ → (e + µ) γ, µ → eγ depends on

the new pivotal factors, (δl13)RR and (δl23)RR. Ignoring the non-renormalizable operators,

we had their values equal to those of (δd13)
∗
LL and (δd23)

∗
LL in table 1, respectively. As to how

(δl13)RR and (δl23)RR change after the non-renormalizable operators are turned on, there

are three logical possibilities: (a) each value remains at the same order of magnitude; (b)

either is very small and the other is not; (c) both are vanishingly small. In Case (a), one

can use (4.6) in order to translate the upper limit on d to those on (δd13)RR and (δd23)RR,

nearly independent of UL. We have seen that both (δl13)RR and (δl23)RR are at least of the

same order as (δd13)LL from (2.24)—otherwise, they should belong to Case (b) or (c). Thus,

the UL-independent upper bound on each of (δd13)RR and (δd23)RR, should be given by a

µ → eγ ring in figures 4. That is, figures 4 are not modified even with this conservative

interpretation, while the µ→ eγ circles in figures 5 should be replaced by those in figures 4.

In Case (b), the bound inevitably depends on UL. As above, consider the scenario where

(δd23)RR is non-vanishing while (δd13)RR vanishes. In addition, suppose that (δl23)RR, for

example, happens to be highly suppressed. Then, (4.3) and (4.5) lead to

d ≈ |(δl13)RR|2|(δd23)RR|2|[UL]22|2. (4.7)

The branching ratio scales like |[UL]22|2. Therefore, a µ → eγ circle in figure 4 should be

enlarged by the factor 1/|[UL]22|. However, we have learned in section 2.2 that Case (b) is

not realized unless the mixing angle in [UR]ab is fine-tuned. In Case (c), which requires a

conspiracy of λU , λD, h1, h2, f1, and f2 in (2.3), as well as the soft terms, µ → eγ does

not serve as a constraint.

In the last part of section 2.2, we discussed consequences of large neutrino Yukawa

couplings assuming UL to be an identity matrix. We considered two cases: one where

neutrino Yukawa couplings are fixed, and the other where boundary condition at M∗ is

fixed at a universal set of values. Here, let us examine how those results change if we relax

the condition on UL. For the first case, we include lij into (4.4) to obtain

|(δd13)RR|2 + |(δd23)RR|2 ≈ |(δl13)LL − l13|2 + |(δl23)LL − l23|2, (4.8)

where (δdij)RR and (δlij)LL are at MGUT and MSUSY, respectively. Unless lij is small enough

compared to the bound on (δlij)LL = (δdij)
∗
RR presented in the previous subsection, the limit

on the left hand side is appreciably weakened. Note that a model with lij that large is likely

to be ruled out by LFV data. The second case is more promising. One can extend (2.34)

in the style of (4.4), to have

|(δd13)RR|2 + |(δd23)RR|2 ≈
( α

1 + α

)2
× [|(δl13)LL|2 + |(δl23)LL|2]. (4.9)

Therefore, the upper bounds on (δd23)RR and (δd13)RR attained from (4.4), are further scaled

down by α/(1 + α).
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Mixing Figure Present Future

|(δd23)RR(MGUT)| 4

(a) 7.6 × 10−2–1.4 × 10−1 1.3 × 10−2

(b) 3.8 × 10−2–7.1 × 10−2 8.1 × 10−3

(c) 1.7 × 10−1 4.0 × 10−2

(d) 8.3 × 10−2–1.5 × 10−1 3.9 × 10−2–4.3 × 10−2

|(δd13)RR(MGUT)| 5

(a) 2.7 × 10−2–1.4 × 10−1 2.5 × 10−3–1.2 × 10−2

(b) 1.6 × 10−2–7.0 × 10−2 1.5 × 10−3–7.3 × 10−3

(c) 4.7 × 10−2 1.1 × 10−2

(d) 5.0 × 10−2 1.1 × 10−2

|(δd23)LL(MGUT)| 6

(a) O(1) O(1)

(b) 0.6–O(1) 0.3–0.4

(c) 0.7 0.3

(d) 0.5 0.3

|(δd13)LL(MGUT)| 7

(a) 0.6 0.3

(b) 0.6 0.1–0.3

(c) 0.1 0.06

(d) 0.1 0.06

Table 5: Upper limit on the size of each mass insertion of down-type squarks at the GUT scale.

The second and third columns indicate the values of m0, M1/2, and tanβ, used in figures 4– 7.

Regarding an RR mixing, if there are two numbers separated by a dash, the left one is for UL = 1

and the right one is for UL 6= 1 obeying (2.12). If the two numbers are the same, it is written only

once. We do the same for an LL mixing on which the alignment condition is given through UR

instead of UL. For a general UR, we drop the µ → eγ constraint as we do not have a systematic

way to impose it.

Recently, an alternative approach to settling down the uncertainties posed by the non-

renormalizable operators has been reported [17]. Their work in progress makes use of

dependence of the proton lifetime on the coefficients of the operators [26] in order to find a

pattern among them. We would say that our strategy is more generic in the sense that it

relies only on the condition that the non-renormalizable operators are Planck-suppressed,

although it may not be as predictive as their anticipated outcome.

4.3 Summary of bounds

The restrictions on down-type squark mixings at the GUT scale, graphically shown in

section 4.1, are condensed in a numerical form in table 5. Each number is the maximum

distance of a point from the origin on the corresponding figure that satisfies all the con-

straints considered in the present work. As for φBs , we use the DØ result, which is marked

in gray (cyan) in figures 4 and 6. We would be left with no solution in many cases if we used

the HFAG fit (which would be a very interesting outcome on its own [34, 35, 47, 48]). In or-

der to estimate the power of φBs measurement at LHCb, we suppose that its future central

value will coincide with the SM prediction. We make the same supposition about sin 2β.
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Those upper bounds are subject to change of parameters or scheme of uncertainty treat-

ment. A variation may also be caused by choosing 2× 10−9 instead of 10−8 as the reach of

τ → eγ and τ → µγ searches at a super B factory. In particular, the strength of a LFV con-

straint depends on UL and UR. We take into account the UL dependence of a maximal RR

insertion using the method described in the previous subsection. As for µ→ eγ, we suppose

Case (a) therein, i.e. we do not envisage a fine tuning among contributions to (δl13)RR or

(δl23)RR. If a LFV restriction is important, relaxing the assumption of UL = 1 increases the

upper limit of the given insertion. Concerning the limit on an LL insertion, we follow the

same procedure to evaluate the dependence of a tau channel on UR, while we keep µ→ eγ

only for UR = 1. Even if UR is unity, however, it turns out that the leptonic data does not

cause a big additional reduction in the bounds set by the hadronic inputs, under the condi-

tions considered in this work. A lepton sector constraint should be looser if we allow for a

different UR. Therefore, the quoted numbers are not greatly influenced by a change of UR.

4.4 Possible alterations in observables

With the region of each mass insertion obtained in section 4.1, we estimate a possible

difference of an affected observable from its SM value. The result is summarized in table 6.

Four of them have been already displayed as contours on each figure indicated in the table.

Note that what has been shown as contours is the value of the observable, not the deviation

from the SM prediction. We use the same set of constraints as in section 4.3.

Under the present conditions, there are still CP asymmetries that might potentially

have a discrepancy bigger than the precision attainable at a super B factory. They are

SK
∗γ

CP , SργCP, Ab→sγ
CP , and A

b→(s+d)γ
CP . They show larger possible alterations for higher m0,

while Ab→dγ
CP doesn’t follow this tendency. Being hadronic observables, their sensitivity to

the GUT scale flavor violation is amplified for higher m0, as was explained in section 4.1,

although they are more severely restricted by other quark sector processes for the same

reason. As we did for table 5, we take account of uncertainties due to a misalignment

between quarks and leptons of the lighter two families. In this case, we obtain the values

after the dash signs, which can be larger than the estimates for perfect alignment.

We repeat the same task with the prospective future inputs. One may expect the pre-

sented deviations, provided that no constraint is seriously violated in a future experiment.

With lower m0, S
K∗γ
CP and SργCP will not show a signature detectable at a super B factory,

even if quark-lepton misalignment is allowed, while Ab→sγ
CP and A

b→(s+d)γ
CP might reveal a

hint. With higher m0, search for a supersymmetric effect in SK
∗γ

CP becomes feasible as well.

In the case with the (δd13)LL mixing, its effect on A
b→(s+d)γ
CP is negligible so that the

variation is at most about 0.5%, because the channel B → Xs+dγ is dominated by B →
Xsγ. We include SBs→K∗γ

CP in the table as well for reference.

Among the CP asymmetries mentioned above, SK
∗γ

CP and SργCP are sensitive to RR

mixings of squarks, and thus are closely related to LFV. Recall that RR mixings give rise

to much higher LFV rates than LL, as we have seen in section 4.1. This motives us to look

into allowed ranges of those two CP asymmetries as functions of LFV branching ratios.

First, we show the correlation between SK
∗γ

CP and B(τ → µγ) in figures 8, each of

which results from the same set of mass insertions as the corresponding plot in figures 4.
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Deviation
Figure Present Future

Future

Mixing precision

4

(a) 0.04–0.07 0.007

0.02

∣∣∆SK
∗γ

CP

∣∣ (b) 0.04–0.07 0.007

(δd23)RR (c) 0.18 0.04

(d) 0.16–0.26 0.07–0.08

5

(a) 0.06–0.30 0.006–0.03

0.10

∣∣∆SργCP

∣∣ (b) 0.06–0.28 0.006–0.03

(δd13)RR (c) 0.21 0.05

(d) 0.39 0.09

5

(a) 0.06–0.28 0.006–0.03∣∣∆SBs→K∗γ
CP

∣∣ (b) 0.06–0.28 0.006–0.03

(δd13)RR (c) 0.17 0.03

(d) 0.32 0.05

6

(a) 1.3 1.3

0.4

∣∣∆Ab→sγ
CP

∣∣ (%) (b) 1.9–2.3 1.0–1.4

(δd23)LL (c) 3.3 1.7

(d) 5.2 2.8

6

(a) 1.3 1.3

0.6

∣∣∆Ab→(s+d)γ
CP

∣∣ (%) (b) 1.8–2.2 0.9–1.3

(δd23)LL (c) 3.2 1.6

(d) 5.1 2.7

7

(a) 16 7∣∣∆Ab→dγ
CP

∣∣ (%) (b) 57 5–15

(δd13)LL (c) 7 3

(d) 15 6

Table 6: Maximal departure of each observable from its SM value given the present and the future

constraints. The second and third columns indicate the plot on which we calculate the observable.

Of the two deviations separated by a dash in a cell, the left one is for UL = 1 and the right one

is for UL 6= 1 obeying (2.12), for the first three CP asymmetries. Those two types of deviations

should be regarded as the same if only one is written. For the rest, the alignment condition is given

through UR instead of UL. For a general UR, we drop the µ → eγ constraint as we do not have a

systematic way to impose it.

Every point on the figures satisfies the current ∆MBs and B(B → Xsγ) constraints. The

upper limit on τ → µγ from µ → eγ has been deduced from the contours in figures 4. In

figures 8 (a) and (b), what restricts SK
∗γ

CP at present is τ → µγ, and in the future µ → eγ

at MEG should take over. In figures (c) and (d), dn, in addition to τ → µγ, is playing an

important role, and the future expectation of SK
∗γ

CP is determined by ∆MBs and φBs . One

can find the numerical range of SK
∗γ

CP allowed in each of the four figures in table 6. Note that
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(d) m0 = 600 GeV, M1/2 = 180 GeV, tanβ = 10

Figure 8: Correlation between SK∗γ
CP and B(τ → µγ) obtained by varying (δd

23)RR, with (δd
ij)LL

generated from RG running between the reduced Planck scale and the GUT scale. A light gray

(yellow) point is disfavored by neutron EDM, while a gray (orange) point is not, and a black (blue)

point satisfies the future ∆MBs
and φBs

constraints. The dashed horizontal line marks the 2 σ

range of SK∗γ
CP , and its SM value is the solid horizontal line. The present and the future limits on

τ → µγ and µ→ eγ are indicated by the vertical lines.

if two numbers are separated by a dash in the table, one should take the left hand side since

the plots are for UL = 1. One could translate these plots to a case where UL is not fixed

at unity, following the prescription presented in section 4.2: regard the horizontal axis as

B(τ → (e+µ) γ)) instead of B(τ → µγ), and shift the upper bounds on τ → µγ rightward

in accordance to this change, while keeping the positions of the vertical lines for µ→ eγ.

Second, let us move to the correlation between SργCP and B(τ → eγ), displayed in

figures 9, which correspond to the parameter space considered in figures 5. We discard any

point that is incompatible with the present data of ∆MBd
, sin 2β, or cos 2β. The upper
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(b) m0 = 220 GeV, M1/2 = 180 GeV, tanβ = 10
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(c) m0 = 600 GeV, M1/2 = 180 GeV, tanβ = 5
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(d) m0 = 600 GeV, M1/2 = 180 GeV, tanβ = 10

Figure 9: Correlation between Sργ
CP and B(τ → eγ) obtained by varying (δd

13)RR, with (δd
ij)LL

generated from RG running between the reduced Planck scale and the GUT scale. A light gray

(yellow) point is consistent with all the current constraints, and a black (blue) point satisfies the

future ∆MBd
and sin 2β constraints. The solid horizontal line marks the SM value of Sργ

CP. The

present and the future limits on τ → µγ and µ → eγ are indicated by the vertical lines. In figures (a)

and (b), the MEG line is outside the left border of each plot.

limit on τ → eγ from µ → eγ has been inferred as we did in the preceding paragraph.

For lower m0 shown in figures 9 (a) and (b), µ → eγ provides the limits on SργCP both

currently and in the future. The MEG bound is not visible on the plane since it restricts

B(τ → eγ) . 7 × 10−11. For higher m0 in figures (c) and (d), possible range of SργCP is

determined by the other hadronic observables, with little help from the lepton sector. The

way to convert these plots to those for UL 6= 1 is almost the same as above: relabel the

horizontal axis as B(τ → (e + µ) γ)) instead of B(τ → eγ), and change the upper bounds
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Deviation
Figure Present Future

Mixing

4

(a) 0.05–0.08 0.01∣∣∆φBs | (b) 0.02–0.04 0.004

(δd23)RR (c) 0.08 0.08

(d) 0.05 0.05

6

(a) 0.05 0.05∣∣∆φBs | (b) 0.02–0.03 0.004–0.008

(δd23)LL (c) 0.57 0.33

(d) 0.32 0.12

Table 7: Maximal departure of φBs
from its SM value under the present and the future constraints

except for those on itself. The second and third columns indicate the relevant plot. Of the two

deviations separated by a dash in a cell, the left one is for UL = 1 and the right one is for UL 6= 1

obeying (2.12), for the RR mixing. Those two types of deviations should be regarded as the same if

only one is written. In the case with (δd
23)LL, the alignment condition is given through UR instead

of UL. For a general UR, we drop the µ → eγ constraint as we do not have a systematic way to

impose it.

on τ → eγ to those on τ → (e+ µ) γ. A difference from the above case is that one should

also multiply the µ→ eγ limit on B(τ → eγ) by 24 ∼ λ−2.

The latest interest in the phase of Bs-Bs mixing leads us to examine its modification

that can be caused by new physics. We lift the constraint on φBs while keeping the others

used in section 4.3, and record its variation allowed by the other bounds in table 7. The

difference between the announced central value and the SM prediction is about 0.7. From

the table it appears that cases with lower m0 and/or large RR mixing (but small LL

mixing) are disfavored by φBs . In the case of RR insertion with higher m0, the primary

barrier is the neutron EDM as is evident from figures 4 (c) and (d). Let us remind the

reader that this situation can be ameliorated by multiplying (δd23)LL by an O(1) complex

factor at MGUT. With the LL insertion and higher m0, on the other hand, figures 6 (c)

and (d) show that B → Xsγ and SφKCP exclude a major part of the region preferred by

the HFAG fit, although there are still remaining parts that are responsible for the large

difference in φBs recorded in the table.

In figures 10, we investigate how LFV constrains φBs by means of correlation plots,

focusing on the RR insertion case considered in figures 4. At first, let us consider only

the leptonic constraints. In this case, LFV and the latest φBs fit are better reconciled for

higher m0 depicted in figures (c) and (d). Obviously, lower tanβ is preferable since a LFV

limit gets tighter for higher tanβ. However, if one takes the neutron EDM bound seriously,

the light gray (yellow) points are discarded while the gray (orange) points remain, and

therefore it becomes harder to account for φBs with an RR mixing. Remember that one

can apply this result to a popular benchmark scenario in which the soft terms at M∗ are

flavor-blind and all the right-handed squark mixings are supposed to originate from large

neutrino Yukawa couplings, as we discussed in the last part of section 2.2. The recipe is to

multiply each LFV branching fraction by (1 + α)2/α2 with α in (2.33). This factor arises
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(a) m0 = 220 GeV, M1/2 = 180 GeV, tanβ = 5
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(b) m0 = 220 GeV, M1/2 = 180 GeV, tanβ = 10
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(c) m0 = 600 GeV, M1/2 = 180 GeV, tanβ = 5
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(d) m0 = 600 GeV, M1/2 = 180 GeV, tanβ = 10

Figure 10: Correlation between φBs
and B(τ → µγ) obtained by varying (δd

23)RR, with (δd
ij)LL

generated from RG running between the reduced Planck scale and the GUT scale. A light gray

(yellow) point is disfavored by neutron EDM, while a gray (orange) point is not. The dashed

horizontal line marks the 90% CL range of φBs
, and its SM value is the solid horizontal line. The

present and the future limits on τ → µγ and µ→ eγ are indicated by the vertical lines.

from the additional running of slepton masses from MGUT down to MR, and strengthens

LFV as the result.

One can be more optimistic in viewing the same correlation plots. For example, the

neutron EDM constraint may be weakened if there is also a non-vanishing complex LLmass

insertion at M∗, or one might simply choose to ignore the constraint due to its hadronic

uncertainties. Then, it might be that the present status of φBs is hinting at a LFV process

occurring at a rate that can be explored in the near future. Notice that this scenario works

best when the value of x defined in (2.26), is around 1/12, as we discussed in section 4.1.
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5. Conclusions

We imposed hadronic and leptonic constraints on sfermion mixing in a class of supersym-

metric models with SU(5) grand unification. We did not particularly assume that the

sfermion mass matrices have a universal form at any scale, but rather that any off-diagonal

entry may be nonzero, which is generically the case in gravity mediated supersymmetry

breaking. Those off-diagonal elements are encoded in the dimensionless mass insertion

parameters in terms of which we express experimental bounds on flavor non-universality

at the GUT scale. While fixing the gluino mass to 500 GeV at the weak scale, we tried two

different boundary conditions on the diagonal components of the soft scalar mass matrix

at MGUT: lower m0 = 220 GeV and higher m0 = 600 GeV. We varied tanβ from 5 to 10

as well. For lower m0, we have found that the upper limit on an RR mixing is essentially

determined by a LFV decay mode both at present and in the near future. This is true

even when one introduces non-renormalizable terms to accommodate the lighter down-type

quark and charged lepton masses. In particular, the apparently unrelated mode µ → eγ

turns out to be remarkably sensitive to a mixing involving the third family. This sensi-

tivity will be much higher with the progress of the MEG experiment. For higher m0, the

situation turns the other way around so that the hadronic constraints, such as B-meson

mixing and neutron EDM, dominate. Also in the near future, measurements at the LHCb

and a super B factory, with the aid of improved lattice QCD, should be able to probe

an RR mixing, with a sensitivity higher than that of a LFV experiment. Concerning the

LL mixings, they are mostly restricted by hadronic data from B physics, although LFV

supplies additional information if m0 is low and tanβ is high. These findings unveil a nice

complementarity of the quark and the lepton sector processes showing their strengths and

weaknesses, depending on the gaugino to scalar mass ratio. We included discussions on the

consequences of the discrepancy recently observed in the Bs-meson mixing phase.
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A. Notations

The scalar mass terms in the soft supersymmetry breaking sector of the minimal super-

symmetric standard model are given by

−Lsoft ⊃ Q†m2
QQ+ U

T
m2
U U

∗
+ E

T
m2
E E

∗
+D

T
m2
DD

∗
+ L†m2

L L, (A.1)
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where the uppercase letters denote the scalar components of the SM superfields embedded

in T and F as in (2.5). Consider a basis where the down-type quark and the charged

lepton Yukawa matrices are diagonalized by superfield rotations. The scalars in this basis,

denoted by lowercase letters, are related to the above fields by (2.13). Therefore, their

mass matrices are connected to those above by the basis change,

m2
q = m2

Q, m2
u = UQm

2
U U

†
Q, m2

e = URm
2
E U

†
R, m2

d = m2
D, m2

l = ULm
2
L U

†
L. (A.2)

Suppose that the squark and slepton mass terms are given by,

−L ⊃ d̃†Ai [m
2
edAB

]ij d̃Bj + ẽ†Ai [m
2
eeAB]ij ẽBj , (A.3)

in the basis where the down-type quark and the charged lepton mass matrices are diagonal.

The sfermion mass matrices include contributions from the Yukawa couplings, the µ term,

the D terms, the soft scalar mass terms, and the A terms. In terms of the mass matrices,

mass insertion parameters are defined by [30]

(δdij)AB ≡ [m2
edAB

]ij/m̃
2
ed
, (δlij)AB ≡ [m2

eeAB ]ij/m̃
2
el
, (A, i) 6= (B, j),

(δdii)AA ≡ (δlii)AA ≡ 0,
(A.4)

where A,B = L,R denote the chiralities, i, j = 1, 2, 3 are the family indices, and m̃2
ed

and

m̃2
el

are the average sfermion masses [1]. In this work, we heavily rely on the mass insertion

notation defined above to discuss the flavor structure of squarks and sleptons. Yet, we do

not use mass insertion approximation to compute physical amplitudes, but work with mass

eigenstates and mixing matrices.

Normally, as its name implies, a mass insertion is a quantity that should be defined at

the scale of the particle mass. Therefore, a squark or a slepton mass insertion is considered

at the sparticle mass scale or at the weak scale. This is the case in the previous paragraph.

In this work, we borrow this notation to deal with the scalar mass matrices at the GUT

scale: a GUT scale mass insertion is an off-diagonal entry of a soft scalar mass matrix

divided by the averaged diagonal element, in the basis where the Yukawa matrix is diagonal.

Following this definition, we have

(δdij)LL = [m2
q ]ij/m̃

2
ed
, (δdij)RR = [m2

d]ij/m̃
2
ed
,

(δlij)LL = [m2
l ]ij/m̃

2
el
, (δlij)RR = [m2

e]ij/m̃
2
el
,

(A.5)

for i 6= j.
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